Sudhanva Narayana
Sudhanva Narayana

Follow

Sudhanva Narayana

Follow
Install TensorFlow on Apple M2 (M1, Pro, Max) with GPU (Metal)

Install TensorFlow on Apple M2 (M1, Pro, Max) with GPU (Metal)

Sudhanva Narayana's photo
Sudhanva Narayana
·Dec 21, 2021·

2 min read

Play this article

Table of contents

  • Installing Miniforge
  • Installing TensorFlow
  • Verifying Installation
  • Running A Sample Code (MNIST)
  • Credits

Note: Uninstall Anaconda/Anaconda Navigator and other related previously installed version of conda-based installations. Anaconda and Miniforge cannot co-exist together.

Installing Miniforge

  • Install miniforge from brew: brew install miniforge
  • Create an anaconda environment: conda create -n tf
  • Activate the environment: conda activate tf
  • Install Python: conda install python

Installing TensorFlow

  • Run: conda install -c apple tensorflow-deps to install Apple's TensorFlow dependencies
  • Run: pip install tensorflow-metal to install Apple's Metal GPU APIs for TensorFlow
  • Execute: pip install tensorflow-macos to install MacOS arm64 version of TensorFlow
  • Execute: pip install tensorflow-datasets pandas jupyterlab to install relevant dependencies to run sample code.

Verifying Installation

  • Execute: jupyter-lab to open a Jupyter Notebook and run the following code:
    import tensorflow as tf
    import tensorflow_datasets as tfds
    print("TensorFlow version:", tf.__version__)
    print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU')))
    print("Num CPUs Available: ", len(tf.config.experimental.list_physical_devices('CPU')))

Running A Sample Code (MNIST)

    (ds_train, ds_test), ds_info = tfds.load(
        'mnist',
        split=['train', 'test'],
        shuffle_files=True,
        as_supervised=True,
        with_info=True,
    )

    def normalize_img(image, label):
      """Normalizes images: `uint8` -> `float32`."""
      return tf.cast(image, tf.float32) / 255., label

    batch_size = 128
    ds_train = ds_train.map(
        normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE)
    ds_train = ds_train.cache()
    ds_train = ds_train.shuffle(ds_info.splits['train'].num_examples)
    ds_train = ds_train.batch(batch_size)
    ds_train = ds_train.prefetch(tf.data.experimental.AUTOTUNE)
    ds_test = ds_test.map(
        normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE)

    ds_test = ds_test.batch(batch_size)
    ds_test = ds_test.cache()
    ds_test = ds_test.prefetch(tf.data.experimental.AUTOTUNE)

    model = tf.keras.models.Sequential([
      tf.keras.layers.Conv2D(32, kernel_size=(3, 3),
                     activation='relu'),
      tf.keras.layers.Conv2D(64, kernel_size=(3, 3),
                     activation='relu'),
      tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
      tf.keras.layers.Flatten(),
      tf.keras.layers.Dense(128, activation='relu'),
      tf.keras.layers.Dense(10, activation='softmax')
    ])

    model.compile(
        loss='sparse_categorical_crossentropy',
        optimizer=tf.keras.optimizers.Adam(0.001),
        metrics=['accuracy'],
    )

    model.fit(
        ds_train,
        epochs=12,
        validation_data=ds_test,
    )

Credits

Did you find this article valuable?

Support Sudhanva Narayana by becoming a sponsor. Any amount is appreciated!

See recent sponsors | Learn more about Hashnode Sponsors
 
Share this